Microwave-assisted oxidation of 1,3,5-trisubstituted 4,5-dihydro-1H-pyrazoles to the corresponding pyrazoles with poly(N,N'-dibromobenzene-1,3-disulfonamide-1,2-ethanediyl)

Davood Azarifar,* Elahe Nadimi, Ramin Ghorbani-Vaghei and Behrooz Maleki

Department of Chemistry, School of Science, Bu Ali Sina University, 65174 Hamadan, Iran. Fax: +98 811 827 2404; e-mail: azarifar@basu.ac.ir

DOI: 10.1070/MC2006v016n06ABEH002421

The title reaction gives pyrazoles in good yields under microwave irradiation when compared with conventional long-time conditions at room temperature.

The use of microwave irradiation in organic synthesis is of considerable importance. The advantages of microwave irradiation as an energy source in organic reactions include increased reaction rates, improved yields, simplicity in handling and highpurity products. 1,3,5-Trisubstituted 2-pyrazoles, which are of biological value as synthetic compounds of some medicinal interest, and be obtained by the oxidative aromatization of corresponding 4,5-dihydro-1*H*-pyrazoles. 1,3,5-Trisubstituted 4,5-dihydro-1*H*-pyrazoles have been conveniently prepared by the cyclization of related chalcones with hydrazines. 4

Reagents including Pd/C/AcOH,⁵ Zr(NO₃)₄,⁶ Co^{II}/O₂,⁷ iodobenzene diacetate,⁸ Pb(OAc)₄,⁹ MnO₂,¹⁰ KMnO₄¹¹ and Ag(NO₃)₂¹² have been reported to effect the oxidation of 2-pyrazolines to the corresponding pyrazoles. However, most of these require long reaction times and high temperatures and give by-products and low yields. Transition metal cations like Co^{II}, Pb^{IV}, Hg^{II},

 Mn^{IV} , Mn^{VII} , Ag^I and Zr^{IV} added as catalysts leave residual toxicity in the products.

Previously, we developed more convenient and easily available reagents for the oxidative aromatization of 2-pyrazolines to the corresponding pyrazoles, including 1,3-dibromo-5,5-dimethyl-hydantoin (DBH),¹³ trichloroisocyanuric acid,¹⁴ *N*-bromosulfonamides,¹⁵ *N*-bromosuccinimide/SiO₂,¹⁶ 4-(4-chlorophenyl)-1,2,4-triazole-3,5-dione¹⁷ and Ca(OCl)₂.¹⁸

In continuation of our research, we were prompted to examine the facile microwave-accelerated oxidation of substituted 4,5-di-hydro-1*H*-pyrazoles **2a**–**r** to corresponding pyrazoles **3a**–**r** by poly(*N*,*N*′-dibromobenzene-1,3-disulfonamide-*N*,*N*′-1,2-ethanediyl) (PBBSE) **1** as an easily accessible reagent, ¹⁹ which can be conveniently recovered by the treatment of poly(benzene-1,3-disulfonamide-*N*,*N*′-1,2-ethanediyl) **4**, produced in the reaction, with bromine. The results are presented in Scheme 1 and Table 1.[†]

References

- (a) D. G. Yadav and N. M. Desai, *Catal. Commun.*, 2006, 6, 325;
 (b) A. Kaddouri and S. Ifrah, *Catal. Commun.*, 2006, 2, 109;
 (c) V. Polshettiwar and M. P. Kaushik, *Catal. Commun.*, 2005, 3, 191;
 (d) M. Adharvana Chari and K. Syamasundar, *Catal. Commun.*, 2005, 1, 67;
 (e) R. S. Varma, *Green Chem.*, 1999, 43.
- 2 A. Loupy, A. Petit, J. Hamelin, F. Texier-Boullet, P. Jacquault and D. Mathe, Synthesis, 1998, 1213.
- 3 (a) S. G. Roelf Van, C. Arnold and K. Wellnga, J. Agric. Food Chem., 1979, 84, 406; (b) H. Z. Katri and S. A. Vunii, J. Ind. Chem. Soc., 1981, 58, 168.
- 4 (a) D. Azarifar and M. Shaebanzadeh, *Molecules*, 2002, 7, 885; (b) D. Azarifar and H. Ghasemnejad, *Molecules*, 2003, 8, 642; (c) D. Azarifar and B. Maleki, *J. Heterocycl. Chem.*, 2005, 42, 157.
- 5 N. Nakamichi, Y. Kawashita and M. Hayashi, Org. Lett., 2002, 4, 3955.

Table 1 Oxidative aromatization of 1,3,5-trisubstituted 4,5-dihydro-1H-pyrazoles 2a-r (1 mmol) with PBBSE in CH₂Cl₂ at room temperature and under microwave irradiation in acetic acid.^a

Substrate	Product ^b	R^1	\mathbb{R}^2	Time/h	Yield (%)	Mp/°C	
						Found	Reportedc
2a	3a	Ph	Ph	0.08 (10)	95 (78)	134–136	139–140
2b	3b	Ph	$3-ClC_6H_4$	0.08 (13)	85 (70)	116-118	112-114
2c	3c	Ph	4-MeOC ₆ H ₄	0.08 (13)	82 (76)	80-82	78-80
2d	3d	Ph	$4-NO_2C_6H_4$	0.07(10)	90 (69)	139-142	142-143
2e	3e	Ph	$4-\text{Me}_2\text{NC}_6\text{H}_4$	0.10(15)	94 (58)	68-70	68-71
2f	3f	$4-MeC_6H_4$	$3-\text{MeC}_6\text{H}_4$	0.07(13)	86 (62)	92-94	94–96
2g	3 g	$4-\text{MeC}_6H_4$	2-Furyl	0.07(10)	80 (70)	90-92	96–98
2h	3h	$4-\text{MeC}_6H_4$	$4-\text{Me}_2\text{NC}_6\text{H}_4$	0.12(12)	98 (65)	117-120	118-120
2i	3i	3-ClC ₆ H ₄	2-Thienyl	0.08(10)	88 (79)	126-128	128-129
2j	3j	$4-MeOC_6H_4$	Ph	0.05 (15)	90 (70)	77–79	74–76
2k	3k	$4-MeOC_6H_4$	$2-ClC_6H_4$	0.05 (10)	95 (76)	69-71	66-68
21	31	2-Thienyl	$4-ClC_6H_4$	0.07(12)	97 (78)	126-128	135-138
2m	3m	2-Thienyl	Ph	0.12(13)	98 (76)	113-115	118-120
2n	3n	3-Thienyl	4-Me2NC6H4	0.10(11)	93 (75)	117-119	120-123
2o	30	2-Naphthyl	$2-\text{MeC}_6\text{H}_4$	0.08(10)	90 (70)	146-148	148-150
2р	3p	2-Naphthyl	3-Thienyl	0.07(8)	85 (78)	125-127	128-132
$\hat{2q}$	3q	$4-MeC_6H_4$	$4-Pr^{i}C_{6}H_{4}$	0.08(10)	86 (70)	57-59	_
2r	3r	2-Thienyl	PhCH=CH	0.07(13)	98 (85)	71-73	_

^aThe results under long-time conditions (room temperature) are shown in parentheses. ^bAll the products were characterised by IR, ¹H and ¹³C NMR spectroscopy and compared with authentic samples. ^cPublished data. ^{6,17,18}

- 6 G. Sabitha, G. S. K. Reddy, C. S. Reddy, N. Fatima and J. S. Yadav, Synthesis, 2003, 1267.
- 7 J. N. Shah and C. K. Shah, J. Org. Chem., 1978, 43, 1266.
- 8 S. P. Singh, D. Kumar, O. Prakash and R. P. Kapoor, *Synth. Commun.*, 1997, 27, 2683.
- W. A. Gladstone and R. O. C. Norman, J. Chem. Soc., Chem. Commun., 1966, 1536.
- 10 I. Bhantnagar and M. V. George, Tetrahedron, 1968, 24, 1293.
- 11 L. I. Smith and K. L. Howard, J. Am. Chem. Soc., 1943, 65, 159.
- 12 R. P. Dodwadmath and T. S. Wheeler, *Proc. Ind. Acad. Sci.*, 1935, 2A, 438.
- 13 (a) D. Azarifar, M. A. Zolfigol and B. Maleki, Bull. Korean Chem. Soc., 2004, 25, 23; (b) D. Azarifar, M. A. Zolfigol and B. Maleki, Synthesis, 2004, 1744.
- 14 (a) M. A. Zolfigol, D. Azarifar and B. Maleki, *Tetrahedron Lett.*, 2004, 45, 2181; (b) D. Azarifar and B. Maleki, *J. Chin. Chem. Soc.*, 2004, 52, 1215.
- (a) R. Ghorbani-Vaghei, D. Azarifar and B. Maleki, Bull. Korean Chem. Soc., 2004, 25, 953; (b) R. Ghorbani-Vaghei, D. Azarifar, A. Khazaei and B. Maleki, Phosphorus Sulfur Silicon Relat. Elem., 2004, 179, 1877; (c) R. Ghorbani-Vaghei, D. Azarifar and B. Maleki, J. Chin. Chem. Soc., 2004, 51, 1373.
- [†] The IR spectra were recorded using a Shimadzu 435-U-04 spectrophotometer (KBr pellets), and the NMR spectra were obtained using a 90 MHz JEOL FT NMR spectrometer. Microanalysis was carried out at The Iranian Petroleum Research Center (Tehran, Iran). All of the 2-pyrazolines and PBBSE were prepared according to published procedures (refs. 4 and 19, respectively). Microwave-assisted reactions were conducted in a Panasonic Model NNS59BH microwave oven.

Typical procedure for the oxidation of 1,3,5-trisubstituted 2-pyrazolines with PBBSE: long-time conditions at room temperature. PBBSE (2 mmol) was added to a solution of 1,3,5-trisubstituted 4,5-dihydro-1*H*-pyrazoles **2a**–**r** (1 mmol) in CH₂Cl₂ (10 ml), and the mixture was stirred vigorously at room temperature. The progress of the reaction was monitored by TLC using EtOAc–*n*-hexane (1:4). The reactions completed in 8–15 h (Table 1). After the complete conversion of the substrate, dry K₂CO₃ (0.5 g) was added to the reaction mixture, the mixture was stirred for 30 min, filtered to remove the insoluble polysulfonamide produced during the reaction, and extracted with CH₂Cl₂ (10 ml). The solvent was then evaporated from the extract to leave a crude solid product, which was further purified by recrystallization from ethanol to give pure pyrazoles **3a**–**r** in 58–85% yields (Table 1).

- 16 D. Azarifar and B. Maleki, Heterocycles, 2005, 65, 865.
- 17 M. A. Zolfigol, D. Azarifar, I. Mohammadpour-Baltork, S. Mallakpour, A. Forghaniha, B. Maleki and M. Abdollahi-Alibeik, *Tetrahedron Lett.*, 2006, 47, 833
- 18 D. Azarifar and A. Gharshasebi, Heterocycles, 2006, 68, 1209.
- (a) R. Ghorbani-Vaghei and H. Jalali, Synthesis, 2005, 7, 1099; (b)
 R. Ghorbani-Vaghei, H. Jalali, E. Shahbazee and H. Veisi, J. Chin. Chem. Soc., 2006, 53, 379.

Received: 7th August 2006; Com. 06/2766

Microwave irradiation conditions. A mixture of 1,3,5-trisubstituted 4,5-dihydro-1*H*-pyrazoles **2a–r** (1 mmol) and PBBSE (2 mmol) was dissolved in AcOH (15 ml), the solution was placed in an alumina bath inside a microwave oven and irradiated at 900 W for 0.05–0.13 h (Table 1). After the reaction was complete as indicated by TLC, the resulting mixture was treated with K_2CO_3 (0.5 g) and stirred for 0.6 h. The mixture was then filtered to remove the precipitated polysulfonamide, and the filtrate was evaporated under a reduced pressure to leave a crude product, which gave pure pyrazoles **3a–r** in 82–98% yields upon recrystallization from ethanol (Table 1). All the pyrazoles were characterised by IR, 1 H and 13 C NMR spectroscopy and compared with the literature data. $^{6.17,18}$

3-(*4-Methylphenyl*)-*1-phenyl-5-*(*4-isopropylphenyl*)*pyrazole* **3q**: yield, 86%; yellow solid; mp 57–59 °C (from EtOH). IR (KBr, ν /cm⁻¹): 1597, 1498. ¹H NMR (90 MHz, CDCl₃) δ : 7.22–7.90 (m, 14H, H_{Ar}), 2.93 (sept., 1H, CH), 2.40 (s, 3H, Me), 1.3 (d, 6H, Me). ¹³C NMR (22.5 MHz, CDCl₃) δ : 152.8 (C=N), 148.6, 139.5, 138.4, 130.3, 128.7, 127.4, 127.2, 126.7, 125.9. Found (%): C, 85.28; H, 6.78; N, 7.92. Calc. for C₂₅H₂₄N₂ (%): C 85.23; H, 6.82; N, 7.95.

1-Phenyl-5-(2-phenylethenyl)-3-(2-thienyl)pyrazole **3r**: yield, 98%; yellow solid; mp 71–73 °C. IR (KBr, ν /cm⁻¹): 1595, 1493. ¹H NMR (90 MHz, CDCl₃) δ: 7.09–7.75 (m, 16H, H_{Ar}). ¹³C NMR (22.5 MHz, CDCl₃) δ: 151.5 (C=N), 144.3, 135.2, 130.5, 128.7, 128.12, 127.4, 127.3, 126.4, 125.6, 124.4, 123.2, 122.2, 117.4 (C-5 in pyrazole), 97.1 (C-4 in pyrazole). Found (%): C, 76.86; H, 4.82; N, 8.57. Calc. for C₂₁H₁₆N₂S (%): C, 76.83; H, 4.88; N, 8.53.